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We demonstrate how three-dimensional fluid flow simulations can be carried 
out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer 
for cellular automata computations. The principal algorithmic innovation is 
the use of a lattice gas model with a 16-bit collision operator that is specially 
adapted to the machine architecture. It is shown how the collision rules can be 
optimized to obtain a low viscosity of the fluid. Predictions of the viscosity 
based on a Boltzmann approximation agree well with measurements of the 
viscosity made on CAM-8. Several test simulations of flows in simple geometries 
--channels,  pipes, and a cubic array of spheres--are carried out. Measurements 
of average flux in these geometries compare well with theoretical predictions. 

KEY W O R D S :  Lattice gases; cellular automata; special-purpose computers; 
flow through porous media. 

1. I N T R O D U C T I O N  

A cellular automaton is a system of discrete variables on a lattice which is 
updated according to some simple and local ruleJ 1"21 Though applications 
of such models range from physics to biology to social science, 131 one of the 
most exciting areas of interest in recent years has been hydrodynamics. 

~ Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139. 

2 Current address:. Box 90665, Department of Music, Duke University, Durham, North 
Carolina 27708-0665. 

3 Center for Computational Science, Boston University, Boston, Massachusetts 02215. 
4Current address: Laboratoire de Physique M~canique des Milieux H&6rog~nes, Ecole 

Sup6rieure de Physique et Chimie Industrielle, 75005 Paris France. 
5 Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, 

Massachusetts 02139. 

105 

0022--4715/95/1000-0105507.50/0 ~ 1995 Plenum Publishing Corporation 



106 Adler  e t  al. 

This interest derives from the discovery by Frisch, Hasslacher, and Pomeau 
in 1986 that discrete cellular automaton models of fluids, known specifi- 
cally as lattice-gas automata, may be constructed for the numerical solution 
of the Navier-Stokes equations, t4, 5) Since their introduction, lattice gases 
have been used to study a variety of problems in hydrodynamics. Perhaps 
the greatest interest in the method is for the simulation of problems that 
either involve complex boundaries, such as porous media, t6) or complex 
fluids, such as suspensions r s) or immiscible mixturesJ 9-1~) 

As in most other endeavors in computational physics, there is a great 
need for fast, low-cost simulations. Indeed, it has long been recognized that 
the simplicity of lattice gases allows them to be simulated on special-purpose 
hardware, called "cellular automata machines. ''t ~'-' 13.2) Such machines have 
been constructed for the simulation of general cellular automata, and have 
been applied to a variety of systems. They combine the performance of 
supercomputers with the hardware simplicity of a personal computer or 
workstation for these particular applications. 

In this paper we describe an implementation of a three-dimensional lat- 
tice-gas model t14) on a new cellular automata machine called CAM-8. ~15" 16) 
CAM-8 retains the high performance-to-cost ratio of previous cellular 
automata machines, but with considerably increased flexibility. It is precisely 
this flexibility which makes it attractive for simulating lattice gases. 

Lattice gases (as well as other cellular automata) may be simulated by 
the application of a lookup table, which gives an output state from the 
input state at every site of the lattice. The size of this table increases with 
the number of degrees of freedom per site. For this reason lattice gases 
for three-dimensional hydrodynamics, t~al which typically require 24 bits of 
state (and hence 2 -,4 possible states) per site, have proved challenging to 
implement in situations where memory is limited, such as on a distributed- 
memory multiprocessor. Following the pioneering work of H~non, 117-19) a 
considerable reduction of table size was achieved by Somers and Rem. t2~ 
Precisely what algorithm and collision table to use, however, remains a 
machine-dependent question. Because the CAM-8 allows one to work most 
efficiently with units of 16 bits of state per site at any instant of time, we 
have chosen to design a new collision strategy built upon successive 16-bit 
table lookups. Our results, in terms of minimization of viscosity (and thus 
maximization of efficiency for the types of simulations that interest us) are 
roughly comparable to those obtained by previous workers. 

The outline of the paper is as follows. We first briefly summarize the 
principal architectural features of the CAM-8. We then review the key 
features of the face-centered hypercubic (FCHC) lattice-gas model upon 
which our implementation is based. Next, we show how the collision step 
of the FCHC lattice gas can be broken down into operations that involve 
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no more than 16 bits at a time. We also show how the collision rules can 
be optimized in a simple way to give a small viscosity. We compare our 
theoretical predictions of the viscosity to results obtained by numerical 
simulation on CAM-8. Finally, we report a number of test simulations of 
flow through channels, pipes, and a periodic array of spheres and compare 
our results to analytic predictions. Our goal in this latter exercise is to 
provide some practical guidelines for the application of our methods to the 
measurement of the permeability of disordered media. 

2. C A M - 8  

CAM-8 is an indefinitely scalable parallel computer optimized for the 
large-scale simulation of three-dimensional cellular automata (CA) systems. 
It emphasizes simulation size, flexibility, and cost efficiency, rather than 
ultimate performance. This emphasis leads to a virtual processor design. 1161 

2.1.  H a r d w a r e  O v e r v i e w  

In CAM-8, each processor simulates the operation of up to millions of 
spatial sites, with the site data stored in conventional DRAM-memory 
chips. This DRAM is scanned sequentially in an addressing pattern that 
maximizes the speed of access, and data are read, updated (by SRAM- 
memory table lookup), and put back. This update cycle, which is 
illustrated in Fig. 1, left, resembles the operation of a video framebuffer, 
and indeed CAM-8 is genetically more closely related to framebuffer hard- 
ware than to conventional microprocessors. 

I 
I 
I 

Fig. 1. CAM-8 system diagram. On the left is a single processing node with dynamic 
random access memory (DRAM) site data flowing through a static random access memory 
(SRAM) lookup table. On the right is a spatial array of CAM8 nodes. 
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Figure 1, right, schematically illustrates an array of CAM-8 processing 
nodes (the array is actually three dimensional in the machine). A uniform 
spatial calculation is handled in parallel by these nodes, with each node 
containing an equal "chunk" of the space. In the diagram the solid lines 
between nodes indicate a local mesh interconnection, used for spatial data 
movement between processors. Since each processor handles millions of 
spatial sites, but only one at a time, these mesh wires are time shared 
among millions of sites. The consequent reduction in interconnect com- 
pared to what would be needed in a fully parallel machine makes large 
three-dimensional simulations practical. There is also a communications 
network (not shown) connecting all nodes to a front-end workstation 
that controls the CAM-8 machine. The workstation uses this network to 
broadcast simulation parameters to all or some of the processing nodes. 

Although the initial CAM-8 chip design accommodates machines with 
many thousands of processing nodes, the first prototypes had only eight 
nodes. All of the simulations discussed in this paper were performed on 
such an eight node prototype, which has about the same amount and 
quality of hardware as one might find in a low-end workstation: 2 Mbytes 
of SRAM, 64 Mbytes of DRAM, about two million gates of 1.2-micron 
CMOS logic, with the whole thing running at 25 MHz. 

2.2. Programmable  Resources 

CAM-8 is a virtual-processor simulator of a fully parallel CA space. Its 
virtual nature makes it possible to reconfigure and redirect its computing 
resources, allowing the programmer to directly control parameters such as: 

�9 Number of dimensions 

�9 Size and shape of the space 

�9 Number of bits at a site 

�9 Directions and distances of data movement 

�9 Rules of data interaction (lookup tables) 

The most novel facet of CAM-8's operation is the data movement, 
which is lattice gas like. Corresponding bits, one from each spatial site, 
constitute a bit-field: each bit-field can be shifted in any direction by a 
chosen amount. The direction is chosen independently for each bit-field, 
and the amount can be quite large--up to a few thousand positions. 6 Data  
movements are uniform across the entire space--the hardware hides the 
fact that the space is divided up among separate processor nodes. 

6 Such large spatial shifts are useful in generating the high-quality random variables that are 
needed by statistical mechanics simulations. 
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The hardware only allows 16 separate bit-fields to be manipulated at 
a time. The 16 bits that "collide" at a given spatial site (i.e., those that land 
there due to their bit-field shifts) are replaced with a new value given by a 
lookup table.,In fact, all data interaction is performed by 16-input/16-out- 
put lookup tables. Interactions that involve more than 16 bits at each site 
must be synthesized as a sequence of 16-bit interactions. 

The lookup tables in the hardware are double buffered: this means 
that while one table is being actively used to scan all the sites and update 
each in turn, the front-end workstation can broadcast the table that will be 
used next. Since the data movement is controlled by a few pointers within 
each processor, these movements can be changed quickly from one scan to 
the next. Thus there is very little overhead involved in applying a different 
lookup table and a different set of bit-field movements at every scan of the 
space. 

Finally, we note that most of our data analysis and data collection is 
performed directly by dedicated statistics-gathering hardware. The CA 
space is split up into bins of a chosen size and lookup tables are used to 
evaluate a function on each of the sites in each bin. These function data are 
collected by event counters and are continuously reported back to the front 
end as the simulation runs. 

3. THE FCHC LATTICE GAS 

Two fluids with quite different microscopic interactions may still have 
the same macroscopic behavior. The reason for this is that the form of the 
macroscopic equations of motion that describe this behavior depend only 
on the conservation laws obeyed by these interactions and not on their 
detailed form. This was one of the main motivations for the introduction 
of lattice-gas automata as a method to simulate fluid flow. 

A lattice gas models a fluid as a large number of particles undergoing 
simple interactions that conserve mass and momentum. While the aim of 
molecular dynamics is to simulate the real physics at the molecular, or 
microscopic, scale, the microworld of lattice gases is fictitious. Nevertheless, 
realistic macroscopic behavior is recovered when space and time averages 
are performed. 

One of the first lattice-gas models was introduced by Hardy et al. in 
1976. ~2~ This roodel, constructed on a square lattice, succeeded in describing 
isotropically propagating sound waves, and, if two particle species were 
introduced, diffusion. The hydrodynamics of this model, however, was 
anisotropic, as was the damping of the sound waves. 

The simplest and first lattice-gas model that produced isotropic two- 
dimensional hydrodynamic behavior was introduced on a triangular lattice 

822/81/1-2-8 
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by Frisch et al. in 1986. t4'5'22' ll) The triangular lattice is crucial for the 
isotropy of the flow dynamics, which, technically, relies on the isotropy of 
the second- and fourth-order tensors constructed from the basis vectors of 
the lattice. In three dimensions no regular lattice with this property exists. 
However, the four-dimensional face-centered hypercubic (FCHC) lattice 
has the required symmetry/14~ as do its multispeed projections to three 
dimensions. The latter case is isotropic because some of the lattice vectors 
have multiplicity two. 

3.1. Description of the FCHC Lattice 

The FCHC lattice is formed from the four basis vectors ( ___ 1, ___ I, 0, 0) 
and the 20 additional vectors obtained by permuting the components of 
these vectors. The FCHC lattice thus has a total of 24 basis vectors, and 
we list these as follows: 

( 
( 

(--1 

(--1 

( 0 
( 0 
( 0 
( 0 

A 

1 0 0 1) 
1 0 0 - 1 )  

0 0 1) 

0 0 - 1 )  

1 1 O) 
1 - 1  O) 

- 1  1 O) 
- 1  - 1  O) 

B 

( 0 1 0 1) 

( 0 1 0 - 1 )  

( 0 - 1  0 1) 

( 0 - 1  0 - 1 )  

( 1 0 1 O) 

( - 1  0 1 O) 

( 1 0 - 1  O) 

( - 1  o - 1  o) 

C 

( 0 0 1 1) 

( 0 0 1 - - 1 )  

( 0 0 - - 1  1) 

( 0 0 - - 1 - - 1 )  (1) 

( 1 1 0 O) 

( 1 --1 0 O) 

(--1 1 0 O) 
(--1 --1 0 O) 

This grouping of the lattice vectors into three subgroups of eight will be 
discussed further below. For now we note that, if 0(hA, ms) is the angle 
between the nth vector of group A and the mth vector of group B, then 
O(nA, ms) = O(nB, mc) = O(no mA) and O(nA, mA) = O(no ms) = O(no mc), 
and each group contains four oppositely oriented pairs of vectors. In other 
words, the ordering of the velocity vectors is such that group B is related 
to group A in exactly the same way as group C is related to B and A is 
related to C. 

It is possible to visualize the FCHC lattice by the geometrical con- 
struction shown in Fig. 2. Consider four unit circles packed into a square 
of side 4 in two dimensions. It is straightforward to see that the inscribed 
circle tangent to each of these four unit circles has radius x / ~ -  1. In three 
dimensions, when eight unit spheres are packed into a cube of side 4, the 
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f 

Fig. 2. Geometric method of visualization of the FCHC lattice. The (2 2, 2 3) unshaded unit 
(circles, spheres) are packed into a (square, cube) of side 4. The shaded (circle, sphere) 
that is tangent to them has radius equal to one less than the square root of the number of 
dimensions. 

inscribed sphere has radius x / ~ - 1 .  Likewise, in D dimensions, when 2 D 
unit hyperspheres are packed into a hypercube of side 4, the inscribed 
hypersphere has radius ~ -  1. In particular, in four dimensions (D = 4), 
the inscribed hypersphere is also a unit hypersphere. This nontrivial pack- 
ing of unit hyperspheres provides an alternative description, within a factor 
of x/~, of the FCHC lattice: the centers of the hyperspheres are the lattice 
vertices, and tangent hyperspheres correspond to linked vertices. 

This geometrical description makes it clear that 16 of a given lattice 
site's neighbors lie on the corners of a perfect four-dimensional hypercube, 
while the other 8 neighbors correspond to the 8 faces of that hypercube. 7 
Presumably, this is how the face-centered hypercubic lattice derives its 
name. Note also that there are three distinct ways in which this partition 
of the lattice vectors into a group of 16 and a group of 8 may be carried 
out. These three ways correspond to letting each of the three subgroups in 
the list (1) be the group of eight. 

To see this explicitly, note that the proper orthogonal matrix 

1 + 1  - 1  0 00 

A = ~  0 +1 + 

0 + 1  - 

(2) 

7 Recall that a D-dimensional hypercube has 2D faces. 
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when applied to each of the 24 lattice vectors in Eq. ( 1 ) yields 8 

A B 

(+1  + l  +1 --1) (+1  --1 -I-1 --1) 

(+1  +1 --1 + I )  (+1  --1 --0 + l )  

( - - l  --1 +1 --1) (--1 +1 -I-1 --1) 

(--1 - 1  --1 + l )  ( - -0  +1 - 1  +1)  

(+1  - 1  + l  + l )  (+1  +1 + l  +1)  

(+1  - 1  - 1  - l )  ( - 1  - 1  + l  + l )  

(--1 +1 -I-I + l )  (+1  +1 - 1  --1) 

(--1 + l  - 1  - 1 )  

In this representation, it 

C 

( 0 0 + 2  0) 

( 0 0 0 +2)  

( 0 0 0 - 2 )  
( 0 0 - 2  o) 
(+2 0 0 o) 
( 0 +2  0 0) 

( 0 - 2  0 0) 

(3) 

(--1 - 1  - 1  - 1 )  ( - 2  0 0 0) 

is manifest that the lattice vectors of subgroups A 
and B lie at the corners of a perfect four-dimensional hypercube, and that 
those of subgroup C lie on its faces. In what follows, we therefore refer to 
this representation as the explicit hypercubic fi'ame. This flame will be 
useful below for describing the isometries of the FCHC lattice. 

Finally, we note that isotropic three-dimensional hydrodynamics can 
be obtained from three-dimensional projections of this four-dimensional 
lattice. Due to the staggered nature of the FCHC lattice, this requires 
only two lattice spacings in the fourth dimension. Alternatively (and equiv- 
alently), we can simply project out the fourth coordinate of the lattice 
vectors in Eq. (1). The resulting set of three-vectors are the lattice vectors 
of an irregular lattice in three dimensions. The neighbors of a point (0, 0, 0) 
on this lattice can be described in Cartesian coordinates as the 6 on-axis 
neighbors at distance one [( _+ 1, 0, 0), (0, _+ 1, 0), and (0, 0, _+ 1)], each 
counted with multiplicity two (double bonds), and the 12 neighbors at 
distance x/~ [( _+ 1, _+ 1, 0) and permutations]. The four-tensor constructed 
by these lattice vectors is perfectly isotropic. 

3.2. M i c r o d y n a m i c s  

The two basic steps of the LGA are (1) propagation of the particles 
and (2) collisions. The particles reside on the lattice sites only, and there 
can be at most one particle per direction at any given site and time. The 
hydrodynamic behavior of the model depends on the fact that the collision 
step conserves mass and momentum (conservation of these quantities holds 
trivially in the propagation step). 

In order to introduce flow with solid walls present one must introduce 
new collisions which prevent particles from moving across the boundaries. 

s For brevity, we have omitted the normalization factor l/v/2 in front of each of these vectors. 
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These might be either of the bounce-back type, which send particles back 
into the direction from which they came, or of the mirror-reflection type, 
where only one component of the particle's momentum is changed. When 
particle velocities are averaged the effect of the bounce-back collision is a 
hydrodynamic no-slip boundary conditionJ 23" 24~ We shall use the bounce- 
back condition in the following, and we shall refer to the sites where this 
condition is implemented as solid sites. 

In order to introduce a body force like gravity, an additional collision 
step is needed that puts momentum into the system. This can be done in 
several ways, one of which is to flip particle velocities at a few randomly 
chosen sites into the direction of the forcing. 

The state at a single site (at position x at time t) is given by the 24 
occupation numbers n i(x, t)~ { 0, 1 }, which are simply the particle numbers 
in direction i. The time development of the n; is given by the microdynamical 
equation 

ni(xnt-ci, t +  1)--ni(x, t ) +  ~?i({n(x, t)}) (4) 

The term O~({n(x, t)} ), where n = (nj, n2 ..... n24), is the change in ni due to 
collisions, e; are the velocity vectors connecting neighboring lattice sites, t is 
the time, and the time increment corresponding to a combined propagation 
and collision step is unity. 

The full detailed state of the lattice gas is given by the set of all n,. on 
all sites. In simulations on a computer, all this information is packed into 
24 bits of information at each site, and is stored and updated. However, the 
quantities of physical interest are the (space and/or time and/or ensemble) 
averaged mass and momentum densities. On the CAM-8 this averaging can 
be performed by the application of lookup tables and read to the front end 
without loss of speed. 

3.3. The 16-Bi t  Col l is ion Opera tor  and Random Isometr ies  

In a three-dimensional lattice gas the number of possible collision 
rules, represented by the collision operator s is very large. If one 24-bit 
output configuration for each of the 2 24= 16M input configurations were 
stored in a table, the table would have a size of at least 48 Mbytes. This is 
bigger than what the local SRAM memory in each node of the CAM-8 per- 
mits, and it is also bigger than the local memory of some massively parallel 
machines, like the Connection Machine CM2. The restriction for the 
CAM-8 is the 16-bit limit of the lookup tables. In order to adapt to this 
restriction each 24-bit collision is split into two 16-bit collisions. The struc- 
ture of this factorization is shown in Fig. 3. The particle velocities are split 
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A B C 

1 
1 

Fig. 3. The structure of the two-step collisions. Each asterisk represents a particle occupa- 
tion number (a bit). The arrows show which bits are influenced by each collision step. 

into the three groups of eight introduced in Eq. (1). The collisions, which 
are given by a single table, involve 16 particles at a time and act first on 
the first 16 particles (subgroups A and B) and then on the last 16 (sub- 
groups B and C). The overall mass and momentum of the 16 particles are 
conserved at each step. The 16-bit table is constructed so that each output 
state corresponds to only one input state. In other words, the table can be 
considered as a one-to-one map between the sets of output and input 
states. Consequently, the 24-bit collision table that results from combining 
two copies of the 16-bit table will also be a one-to-one map. For this 
reason the collisions satisfy semi-detailed balancedJ 5~ 

Such a division of the collision rule into three fixed sets of spatial 
directions can introduce anisotropies. Indeed, these collision rules give rise 
to a viscosity which varies by more than 20% with the direction of the 
velocity gradients. In order to prevent this effect, the particles are first sub- 
jected to a random precursor t ransformation--an isometry p- -before  the 
collision C; after the collision they are then subjected to the inverse 
isometry p -  1. The isometries p form a group G defined as the set of trans- 
formations that map the set of lattice vectors {c/} to itself, preserving the 
vectors' lengths and the angles between them. The total collision step can 
thus be represented by the operator p-lCp, where C is deterministic and 
is given by the 16-bit table, and p is randomly chosen from the isometry 
group G at every timestep. Since the group ofp 's  include all possible spatial 
rotations, and since they are chosen randomly at each timestep, it is clear 
that their effect will be to average out all anisotropies in the collision table. 
Note that p can be the same for all sites on the lattice. 

It can be shown that there are altogether 1152 elements in G, t~8) and 
each element is a map acting on all the 24 bits. It is therefore crucial that 
the isometrics can be factorized into factors that, like C, decompose into 
operations on subsets of the 24 bits. 
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This factorization takes a convenient form when specified by the 
action of the isometrics on the coordinates of the velocity vectors in the 
explicit hypercubic frame defined by Eq. (1). In this frame the isometrics 
take the form of a product of simple coordinate inversions and permuta- 
tions, known as R and P isometrics, respectively, combined with the 
forward or reverse cyclic interchange of the subgroups A, B, and CJ ~7) 
Specifically, the isometrics corresponding to the forward [(A,B, C)~ 
(C, A, B)] and reverse [(A, B, C) ~ (B, C, A)] cyclic interchange of the 
three subgroups are denoted by S~ and S 2, respectively. The R and P 
isometrics are particularly simple because they do not map vectors between 
A + B and C. Thus they can be encoded as 16-bit and 8 bit tables acting 
on A + B and C, respectively. 

As a concrete example, consider the axis-inversion isometry R4, 
implemented by negating the fourth coordinate in the explicit hypercubic 
frame. As before, we enumerate the lattice vectors in this frame by 
1A ..... 8A, Is  ..... 8s, l c  ..... 8 o  where, for example, nA denotes the nth entry 
of column A in Eq. (3). It is evident that the application of R4 amounts to 
swapping the lattice vectors 1A and 5s, 2A and 7s, 3A and 6s, 4,~ and 8s, 
5A and Is,  6A and 2s, 7A and 3s, 8A and 4s, and 2c and 3c. The 
orthogonal matrix, Eq. (2), then maps these swaps back to the corre- 
sponding swaps in the original frame, Eq. ( 1 ), even though it is evident that 
R4 is no longer a simple axis inversion in that frame. So, for example, 
ordering the lattice vectors and their corresponding bits according to 
Eq. (1), we see that the state 

101010101010101010101010 (5) 

maps to the state 

110010101010110011001010 (6) 

under the isometry R4. 
To apply a general isometry p to the lattice, we exploit the fact that 

p can be written in the product form 

I I I I I I Pl4 
(7) 

where the indices of the R and P isometries refer to the axis to be inverted 
or the axes to be permuted, respectively. The elementary R and P isometries 
are their own inverses, whereas S~ is the inverse of $2. To choose a random 
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isometry at each time step, eight random numbers are computed and used 
to choose one isometry from each column above. The resulting combined 
isometry is then performed by the successive application of tables corre- 
sponding to each of the elementary isometries. The inverse isometry is 
obtained by the application of the tables in the reverse order. 

3.4. Memory Usage and Implementation of the Algorithm 

The memory in the CAM-8 is arranged so that there are four 16-bit 
subcells at each lattice site. The initial organization of the memory is to 
occupy the first eight bits of the first three subcells with the three groups 
A, B, and C of lattice vectors, respectively. The subcells are given the same 
labels, A, B, and C, as the velocity groups they contain. The extra bits are 
used as logical flags and swap space which can minimize the number of 
steps required to implement the collision algorithm, trading abundant 
memory for computational speed. In addition, there is a subcell D which 
contains flags that indicate whether or not a lattice site is solid, and 
whether or not forcing is to be performed (if possible) at that site. Thus bits 
0-7 of the subcell A indicate the presence or absence of particles moving 
in lattice directions A, while bits 0-7 of subcell B indicate similarly for 
lattice directions B, and bits 0-7 of subcell C indicate similarly for lattice 
directions C. 

The collision algorithm proceeds in five steps: 

Apply forcing and reorganize the memory to prepare subsequent . 

steps. 

2. 

3. 

4. 

Apply randomly chosen R, P, and S isometries. 

Apply collision table. 

Apply inverses of isometries applied in step 2 in reverse order. 

5. Reflect lattice vectors at solid sites and restore initial organization 
of memory. 

Forcing is applied by adding momentum to a particle if possible and 
if the flag at the site permits. The bit-field of flags (or bit-fields, if forcing 
in more than one direction is done simultaneously) is randomly shifted at 
each time step so that forcing is on average uniform over the space. 
Because the same lookup tables are necessarily applied at every site, the 
amount of forcing is set in the initial conditions by setting the number of 
positively set flags. The amount of forcing applied cannot be precisely 
tuned, since not all particle configurations can be changed to increase the 
momentum in a given direction. For this reason the applied force must be 
measured along with the other observables. 
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At the solid sites all momenta are reversed. This is an operation that 
can be performed on each of the three groups of bits separately, since each 
group contains four pairs of oppositely oriented momenta. The momentum 
reversals are handled in the following manner. The flag that indicates 
whether or not a site is solid is copied into each of the first three subcells. 
If the site is solid, the momentum information in each subcell (in bits 0-7) 
is moved to the higher eight bits (8-15) and the lower bits are set to zero. 
The subsequent steps in the collision algorithm are thus applied to the 
eight bits of zero instead of the momentum information, and the net result 
is no change. At the end of the collision step, the presence of zeros in the 
first eight bits of each subcell indicates that the site is solid, and that the 
momentum information in the high eight bits should be reflected through 
the origin and repositioned in the lower eight bits of each subcell. This 
algorithm is robust in the case where the site is not solid but no particles 
are present, since, in this case, the reflection of the bits will cause no 
change. 

When forcing is being applied in only a single direction, the collision 
algorithm requires 26 applications of lookup tables when an S isometry is 
applied, and 14 applications when the S isometry chosen is the identity, 
which happens 33%of the time. Thus the average number of lookup table 
applications required per time step is 22. The performance of the present 
algorithm on the eight-node machine (one node handles 4M 16-bit sites) 
is 7M site updates per second. It benefits greatly from the fact that the 
CAM-8 can download one table while being busy using another, without 
loss of speed. 

4. O P T I M I Z A T I O N  O F  T H E  V I S C O S I T Y  

Typically, lattice-gas collision rules are chosen to maximize a 
"Reynolds coefficient" and thus the Reynolds number of a simulation. For 
the application we envision--namely, slow flow through disordered porous 
media--accuracy and efficiency of the simulation improve as the kinematic 
viscosity is reduced. 1"-5) In this section we show how we choose our 16-bit 
collision tables to obtain a low viscosity. 

By employing the Boltzmann approximation, which assumes that the 
particles entering a collision are uncorrelated, it is possible to derive a 
closed expression for the kinematic viscosity v in terms of the collision rules 
and the average density d~< 1 per direction i. The formula, due to 
H~non, ~8) has the form 

l + Q  
v (8) 

6(1 - Q) 
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where 

Q = ~8 ~ A(s  ~ s') d" ' - ' (  1 - d)  z3-m y~a(s) y .a(s ,  ) 
$$' 

(9) 

and A(s--* s') is the probabil i ty  that  the state s goes into s'. The sum runs 
over all possible input and output  states s and s', where s = {sg}, m = Y'.~ s~ 
is the mass  at a site, 0c and fl are Cartesian indices with summat ion  over 
repeated indices implied, and 

24 

Y~a--- ~ s,(ci~cia-�89 (10) 
i = l  

where 6~p is the Kronecker  delta. The sum (9) is not  as hard to compute  
as it may  appear.  First, note that  the term Y~p(s) Y~a(s') is easily evaluated 
a s  

r'~a(sl Y~p(s') = Y~ s,6(c,,,c~ a -  ~_,L,p)%,,cjp- �89 
U 

i 2 = ~ s,s).[ (c,.ej) - 1] 
q 

= E S , S ~ j  

O" 

(11) 

where 

s~0= (e,.. ej) 2 - 1 (12) 

Fur thermore,  the r andom isometries cancel themselves out. To  see this, 
note that  the probabil i ty A(s, s') can be written 

A(s, s ' ) -  1 - ~-~_~'.Ao(ps, ps') (13) 
p 

where p is an isometry and 

Ao(s ,s , )=~l  if s '=Cs  (14) 10 otherwise 

where Cs is the output  of  the deterministic 24-bit collision table. F r o m  
Eq. (9) it then follows that  
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Q = ~', faA(s, s') Y~#(s) Y~#(s') (15) 
s,  s" 

= ~l-~_ ~ faAo(p s, ps') Y~#(s) Y~#(s') (16) 
p .  s ,  s '  

= ~ ~ fa Y~#(s) Y~#(p -'Cps) (17) 
p . s  

= ~ Z fa Y=I,(P-') Y=#(p-'Cs) (18) 
p , s  

= ~ Z fu Y~#(s) Y~#(Cs) (19) 
p , s  

= ~ fa Y~#(s) Y~#( Cs) (20) 
8 

where fa = d"'- t(  1 - d )23  -% and in passing from Eq. (18) to (19), we have 
used the fact that isometrics preserve inner products and that the product 
Y~#(s) Y~#(s') depends only on inner products of vectors. The latter 
property may be deduced from Eq. (12) by noting that Y~p(s) Y~p(s')= 
m 2 [ ( u . u ' ) 2 - 1 ] ,  where the velocities u and u' correspond to states s 
and s', respectively. 

The minimization of Eq. (9) may be made clearer by noting that the 
angle between lattice vectors i and j in different subgroups of ~ j  is either 
n/3 or 2n/3, and le,I = v / i  It follows that e;.  ej = _ 1 and that Mj = 0 for 
i and j in different subgroups. It follows that the 24 x 24 matrix d is block 
diagonal, 

= A (21) 

0 

where the O's denote 8 • 8 null matrices, and the 8 x 8 matrix of components 
A for lattice vectors in the same subgroup is given by 

A =  

+3 - 1  - 1  +3 - 1  - 1  - I  - 1  

- 1  +3 +3 - 1  - 1  - 1  - 1  - 1  

- 1  +3 +3 - 1  - 1  - 1  - 1  - 1  

+3 - 1  - 1  +3 - 1  - 1  - 1  - 1  

- 1  - 1  - 1  - 1  +3 - 1  - 1  +3 

--1 --1 --1 - 1  - 1  +3 +3 - 1  

--1 - 1  - I  - 1  - 1  +3 +3 - 1  

- 1  --1 - 1  --1 +3 --1 - 1  +3 

(22) 
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Thus, heuristically speaking, collision events that take a particle from one 
lattice vector to another--neither the original one nor its negation--in the 
same subgroup of eight are the most preferred in terms of minimizing Q, 
since in these cases the score, computed from Eq. (12), is --1. Collisions 
that take a particle to a different subgroup are next (score =0).  Finally, 
collisions that take particles to themselves or their negation are least 
preferred (score= +3). The collision set that minimizes this scoring is 
optimal. 

Due to the symmetric ordering of the velocity vectors, Q splits into a 
sum of three terms 

Q= QA + Qs+ Qc (23) 

corresponding to the group, A, B, and C respectively. We consider only the 
first two terms, which corresponds to a 16-bit table, and choose the colli- 
sions that minimize (QA + Qs). Note that v = v(Q) is an increasing function 
of Q, so that minimizing Q is equivalent to minimizing lz- Minimizing 
(QA +Qa) ,  however, is not equivalent to minimizing QA + Qs+ Qc. The 
former quantity results from a single application of the 16-bit table, 
whereas the latter quantity results from applying the 16-bit table twice. 
Only QA remains the same after the second application. 

The reason for doing only the restricted optimization is twofold. First, 
by restricting the optimization to the 16-bit space with 2 ~6 velocities, an 
exhaustive search through all possible output states corresponding to every 
input state is feasible and requires only about 1 h of computation time on 
a Sun Sparcstation 2. By comparison, an exhaustive search through all out- 
put states corresponding to the 2 24 possible input states of the complete 
collision table would require increasing computation time by a factor of 
(28) 2 ~ 65,000. 

Second, we argue that the process of minimizing QA + QB approx- 
imates the process of minimizing Q. From the above equations it is seen that 
minimizing Q means finding output states that select the matrix elements 
- 1  in A. This corresponds to maximizing the number of perpendicular 
directions between the velocities of the input and output states within each 
subgroup of eight. Physically it corresponds to minimizing the momentum 
flux and thereby the viscosity. For this purpose it is advantageous to let a 
particle scatter into one of the directions of its own subgroup which give a 
contribution - 1 to the matrix product, rather than into another subgroup, 
which would give no contribution to the matrix product. The 16-bit colli- 
sions certainly allow for the particles to go into their own subgroups. 

However, the selection of output states is restricted, not only by mass 
and momentum conservation, but by the limited number of velocities in the 
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Fig. 4. 

0,3 
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density d 

Viscosity v as a function of the reduced density ,4. The line shows the Boltzmann 
values and the dots show the values obtained from simulations. 

16-bit states as well. Also, since the 16-bit table is applied twice to give the 
full collision, the eight particles that are involved in both collisions may 
scatter back into a disadvantageous direction. The probability that such 
backscattering occurs, however, appears to be small enough to give a 
relatively low viscosity. A refined scheme that takes into account that the 
16-bit collisions are indeed applied twice would be expected to decrease the 
viscosity further. However, it would not circumvent the severe restrictions 
intrinsic to a 16-bit table. In optimization schemes c~9"2~ that employ the 
freedom to pick output states in the full space of 24-bit states, the viscosity 
is reduced to values which are almost an order of magnitude smaller than 
those we report here. 

Our optimized viscosity, determined from the Boltzmann approxima- 
tion of Eqs. (8)-(10), is given as a function of the reduced density d in 
Fig. 4. Here it is also compared to measurements of the viscosity by simula- 
tion of a relaxing shear wave on the CAM-8. Specifically, simulations were 
initialized with the velocity profile 

u=(x, t = O ) =  U sin(kx) (24) 

where u_ is the z component of the velocity, k = 2n/L, L = 64 is the linear 
size of the system, U = 0.07 is the maximum flow velocity, x is a Cartesian 
coordinate, and t is the time. According to the Stokes equation, the velocity 
should evolve as 

u__(x, t ) =  U sin(kx) exp(-kZvt)  (25) 

The viscosity can thus be deduced from the integral ~0 L dx [ud, which decays 
exponentially with time. In Fig. 4, error bars are approximately the size of 
the symbols. The measured values are expected to be somewhat greater than 
the Boltzmann prediction t26" 20. 27~ and indeed most of our measurements 
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are. The fact that some are not is indicative of the magnitude of the 
experimental error. 

The minimum viscosity is obtained at a density d =  0.5 and has the 
value v = 0.095. For comparison, the value obtained from a purely random 
table is v = 0.1667. When Q is minimized by choosing the collisions by an 
exhaustive search in the (severely) restricted space of 24-bit isometries/18~ 
the resulting viscosity is within 20% of the value resulting from the 
random table. 9 

5. TEST S I M U L A T I O N S  

To check the behavior of the model when the fluid is forced in the 
presence of solid walls we performed simulations of flow through a pipe 
and channel as well as flow through a simple cubic array of solid spheres. 
The latter geometry creates the only truly three-dimensional flow because 
the flow passes through constrictions. The simulations of pipe flow were 
carried out to obtain an estimate of the lower limit for the spatial size of 
obstructions and constrictions. 

Table I summarizes the results of the simulations of flow through 
channels of half-width R, pipes with radius R, and periodic cubic arrays of 
spheres with radius R. The pipes were constructed with periodic boundary 
conditions in the flow direction, whereas the channels had periodic 
boundaries in two directions and a flat-wall boundary perpendicular to the 
third direction. In the table, the permeability x of each particular geometry 
is compared to the theoretical prediction of the permeability /('theory' The 
permeability is defined as 

Jv~ 
x =  F (26) 

where J is the total mass flux, F is the total force applied to the fluid, and 
~b is the fraction of void space, i.e., the porosity. Note that ~b = 1 for the pipe 
and the channel. In the simulations the permeabilities were deduced from 
the measurement of the average flow rate and the average forcing of the 
fluid, and the uncertainties are estimated from the noise in these data. 

The theoretical expression for the permeability of the pipe, 

R 2 

Kthe~ = T (27) 

9 In this case the problem is slightly different because the minimization is of a Reynolds 
coefficient rather than of the viscosity. 
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Table I. Comparison of Calculations of the Permeability K to Theoretical 
Predictions Ktheo,v for Channels, Pipes, and a Periodic Cubic Array of Spheres ~ 

Geometry ~b R (x - xtheo,y)/xthco ~ R~1r 

Channel 1.0 1.5 + 0.04 -t- 0.03 1.6 
1.0 2.5 -0.04 4- 0.02 2.4 
1.0 3.5 -0.03 4- 0.05 3.4 
1.00 7.5 + 0.03 -I- 0.05 7.7 
1.00 15.5 +0.04 -I- 0.05* 16.1 

Pipe 1.0 1.5 +0.09 _ 0.07 1.6 
1.0 2.5 +0.01 4- 0.04 2.5 
1.0 8.5 - 0.03 4- 0.02 8.4 
1.0 15.5 -0.07 4- 0.05* 14.9 

Array of spheres 0.713 4.5 - 0.07 + 0.08 4.6 
0.907 4.5 -0.11 4- 0.02 4.7 
0.719 6.5 +0.05 4- 0.06 6.4 
0.882 19.5 -0.12 -I- 0.04* 20.4 
0.882 19.5 -- 0.04 4- 0.02 19.8 
0.735 25.5 -0.04 4- 0.07* 25.8 

a R denotes the radius of the pipes and spheres and the half-width of the channels, Reg denotes 
the effective radius (half-width) corresponding to the theoretical expressions for xtheo~y; ~b is 
the void fraction. The asterisk shows the simulations that were performed on CAM-8. The 
remaining small-scale simulations were carried out on a workstation. 

is easi ly  o b t a i n e d  f r o m  the  S t o k e s  e q u a t i o n ,  as is t he  p e r m e a b i l i t y  o f  a 

c h a n n e l  

R 2 
Kthe~ = T (28)  

T h e  t h e o r e t i c a l  e x p r e s s i o n  for  t he  p e r m e a b i l i t y  o f  t he  s imp le  c u b i c  a r r a y  of  

sphe re s  is o b t a i n e d  ( in  a s l ight ly  d i f ferent  f o r m )  b y  H a s i m o t o  t28~ a n d  

S a n g a n i  a n d  Ac r ivos  t291 a n d  h a s  the  f o r m  

Xtheory -- 9 K ( $ )  (29)  

w h e r e  K(~b) is g iven  in ref. 29. In  th i s  case  t he  r ad i i  R =  19.5 a n d  26.5 

c o r r e s p o n d  to  t he  p o r o s i t i e s  ~b = 0.882 a n d  ~ = 0.735, respect ive ly .  T h e  d r a g  

F o n  a s ingle  s p h e r e  in  t he  a r r a y  is 

F=K(~)6npvR (30)  
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where p is the mass density and v is the viscosity of the fluid. It is seen that 
K(~) >/1 is the correction factor to the Stokes law. When the spheres are 
infinitely far apart ~b = 1 and K = 1. 

The noninteger values of R are discussed below. They are related to 
the definitions of the (discretized) geometries in the following way: For the 
pipe a site will be a void site if its distance r from the symmetry axis 
satisfies the inequality 

r < R + 0 . 5  (31) 

The remaining sites on the lattice will be solid sites. The solid sites of the 
sphere are given by the same inequality if r is taken to be the distance from 
the center of the sphere. 

The effective radius Refr given in Table I is the radius (half-width) that 
gives the observed permeability when inserted in the theoretical expressions 
for Ktheory. Especially in the case of the spheres the permeability varies 
strongly with R, and the difference between R and Refr corresponding to the 
discrepancies between x and Ktheory is small. 

The discrepancies between the theoretical and simulated results have 
three principal causes: 

�9 Uncertainty in the effective position of the wall 

�9 Discretization errors 

�9 Effects of compressibility 

In the case of the channel and pipe simulations, only the first and second 
problems come into play, whereas all three cause errors in the three-dimen- 
sional case of the spheres. The discretization errors are due both to the 
approximations made when smoothly curved surfaces are represented on a 
lattice and to nonhydrodynamic effects at sufficiently small scales. 

For the hydrodynamic behavior of the lattice gas to be described by 
the equations of incompressible hydrodynamics, several requirements must 
be fulfilled. First, the geometry must be such that there is a scale separation 
between the lattice constant and the scale over which the flow varies. The 
ratio between these scales is denoted by the small number e. Second, the 
flow must be forced sufficiently weakly so that the flow velocity u does not 
exceed e. Finally, density variations must remain small. More precisely, the 
variations in p must be of order e 2 or smaller. In geometries where the over- 
all permeability is small, a relatively large force will be necessary to drive 
the flow and spatial variations in the permeability (caused, for instance, by 
constrictions) may result in large density variations, even when u is small. 

This is the case in particular for the CAM-8 simulation with the R = 19.5 
sphere where the forcing applied produced a maximum flow velocity u = 0.10. 



Simulating 3D Hydrodynamics on a CA Mach ine 125 

This simulation was repeated on a workstation with approximately half the 
forcing, and the resulting discrepancy between theory and simulations was 
correspondingly decreased. 

When the requirements on the scale separation are obeyed and there 
is no forcing, the lattice gas is described by c22~ 

Ou VP 
~-~+ g(p)u-  Vu . . . .  4- vV2u (32) 

P 

where u and p are the average flow velocity and the density, respectively, 

P = (1/2) p[ 1 --g(p) u 2] (33) 

is the pressure, c22) and v is the kinematic viscosity. The g-factor is given as 

= 4  ( 1 2 - p  x ) 
g(P) 3 \ 2 4 - p ]  (34) 

The velocity dependence in the pressure results from the discreteness of the 
velocities and the exclusion principle. For the purpose of finite-Reynolds- 
number simulations, the g-factor may be removed by rescaling the velocity 
as u' =g(p)u. c22) In the simulations the average density/~= 12 was chosen 
so that g = 0 and the flow is described by the Stokes equation in the limit 
where there are no density variations. 

As an example of how to quantify the density variations in steady- 
state flow, we give an estimate of the density variations that will result in 
the case of the array of spheres. By the above equation of state (33) we 
have that the density difference across the sphere is given as 

zip ~ 2ziP (35) 

But this pressure difference can be estimated as the drag divided by some 
area which is characteristic for the sphere, say nR 2. Hence, by Eq. (30) 

zip ,~, K(~). 12vU/R (36) 

Since the drag coefficient K(r increases sharply with decreasing porosity r 
zlp may become significant even when U/R ~ e 2 is small. Care must be 
taken in order.for  this effect of compressibility in the lattice gas to be 
negligible. In the present case when p is chosen so that g(p)=0 and the 
Stokes equations are simulated, deviations in p from its average value will 
cause a finite value of g(p). This means that the g-dependent term of 
Eq. (32) must be taken into account and we are no longer in the regime of 
linear hydrodynamics. 

822/81/I-2-9 
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The effective wall positions have been studied theoretically by several 
authors.~23. 24) It can be shown (theoretically) that in the case of Couette 
flow along a fiat wall oriented in a direction parallel to the lattice direc- 
tions, the position of vanishing velocity is not on the wall sites, but rather 
half a lattice unit measured from the wall sites into the fluid region. In the 
case when the velocity field has a nonvanishing second derivative, there is 
a correction to the effective wall position of relative order e. This correction 
is significant only when the constrictions in the flow are very small, and it 
depends on the viscosity. 

In the channel flow simulations referred above, we fitted the velocity 
profiles with a parabola, as predicted by the Stokes equation. Within the 
noise of the measurements we found agreement between simulations and a 
parabolic profile going through the position halfway between the first 
wall site and the first fluid site. We also found good agreement when the 
wall normal was in an angle of n/4 to the closest lattice directions. This 
result slightly generalizes the predicted result for the wall positions ~24). In 
Table I the values of R are obtained by assuming that the effective wall 
position is always halfway between the first wall site and the first fluid site. 
In the case of curved geometries this approximation creates discrepancies 
in addition to the discretization approximation. 

The relatively good agreement between theory and simulations in the 
case of the two smallest pipes is coincidental, since the cross sections of these 
pipes are squares rather than circles. In simulations of the flow around the 
periodic array of spheres (in the simulations, a single sphere and periodic 
boundary conditions were used) the result is highly sensitive to the exact 
position of the boundary, as can be seen from the values of Rerr given in 
Table I, and the small discrepancy between simulation and theory can be 
accounted for by a correspondingly small shift of the effective boundary. 

In general, the lower limit on the size of obstructions and constrictions 
depends on the particular application as well as the required precision. In 
the case of flow in porous media, the coarse-grained characteristics depend 
mainly on the flow in the widest channels, and the averaged behavior 
depends only weakly on the flow in the narrower passages through the 
medium. In this case the small-scale hydrodynamics may not matter much. 
But the permeability typically depends strongly on the effective positions of 
the walls, and care must be taken to ensure that these are correctly 
represented or that the channels are sufficiently wide. 

6. CONCLUSION 

We have designed an algorithm for the implementation of a three- 
dimensional (FCHC) lattice gas model on the CAM-8. It has been shown 
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how a proper geometric grouping of the velocity vectors on the lattice 
makes it possible to decompose both the collisions and the random 
isometries acting on the full 24-bit states into operations involving only 16 
or 8 bits at .a time. The corresponding 16-bit collision table has been 
optimized to obtain a minimum viscosity, and tested against analytic 
results from the Boltzmann theory. The architecture of the CAM-8 has 
been described, and the performance of an eight-node machine has been 
shown to be comparable to that of existing supercomputers. Some practical 
limitations of the model have been established and discussed, and it has 
been shown that the model behaves according to the hydrodynamic predic- 
tions for various permeable media. We have thus demonstrated that this 
implementation of the FCHC lattice gas represents a working tool for 
large-scale simulation of flows in simple and complex geometries. 
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